Pattern Analysis and Intelligent Systems
Neda Damya; Farhad Soleimanian Gharehchopogh
Volume 6, Issue 4 , November 2020, , Pages 227-238
Abstract
Clustering is a method of data analysis and one of the important methods in data mining that has been considered by researchers in many fields as well as in many disciplines. In this paper, we propose combining WOA with BA for data clustering. To assess the efficiency of the proposed method, it has been ...
Read More
Clustering is a method of data analysis and one of the important methods in data mining that has been considered by researchers in many fields as well as in many disciplines. In this paper, we propose combining WOA with BA for data clustering. To assess the efficiency of the proposed method, it has been applied in data clustering. In the proposed method, first, by examining BA thoroughly, the weaknesses of this algorithm in exploitation and exploration are identified. The proposed method focuses on improving BA exploitation. Therefore, in the proposed method, instead of the random selection step, one solution is selected from the best solutions, and some of the dimensions of the position vector in BA are replaced We change some of the best solutions with the step of reducing the encircled mechanism and updating the WOA spiral, and finally, after selecting the best exploitation between the two stages of WOA exploitation and BA exploitation, the desired changes are applied on solutions. We evaluate the performance of the proposed method in comparison with other meta-heuristic algorithms in the data clustering discussion using six datasets. The results of these experiments show that the proposed method is statistically much better than the standard BA and also the proposed method is better than the WOA. Overall, the proposed method was more robust and better than the Harmony Search Algorithm (HAS), Artificial Bee Colony (ABC), WOA and BA.
Pattern Analysis and Intelligent Systems
Mohamed T Elhadi
Volume 5, Issue 2 , May 2019, , Pages 117-128
Abstract
Besides for its own merits, text classification (TC) has become a cornerstone in many applications. Work presented here is part of and a pre-requisite for a project we have overtaken to create a corpus for the Arabic text process. It is an attempt to create modules automatically that would help speed ...
Read More
Besides for its own merits, text classification (TC) has become a cornerstone in many applications. Work presented here is part of and a pre-requisite for a project we have overtaken to create a corpus for the Arabic text process. It is an attempt to create modules automatically that would help speed up the process of classification for any text categorization task. It also serves as a tool for the creation of Arabic text corpora. In particular, we create a text classification process for Arabic news articles downloaded from web news portals and sites. The suggested procedure is a pilot project that uses some human predefined set of documents that have been assigned to some subjects or categories. A vectorized Term Frequency, Inverse Document Frequency (TF-IDF) based information processing was used for the initial verification of the categories. The resulting validated categories used to predict categories for new documents. The experiment used 1000 initial documents pre-assigned into five categories of each with 200 documents assigned. An initial set of 2195 documents were downloaded from a number of Arabic news sources. They were pre-processed for use in testing the utility of the suggested classification procedure using the cosine similarity as a classifier. Results were very encouraging with very satisfying precision, recall and F1-score. It is the intention of the authors to improve the procedure and to use it for Arabic corpora creation.
Pattern Analysis and Intelligent Systems
Negin Fatholahzade; Gholamreza Akbarizadeh; Morteza Romoozi
Volume 4, Issue 2 , May 2018, , Pages 51-60
Abstract
Nowadays the active traffic management is enabled for better performance due to the nature of the real-time large data in transportation system. With the advancement of large data, monitoring and improving the traffic safety transformed into necessity in the form of actively and appropriately. Per-formance ...
Read More
Nowadays the active traffic management is enabled for better performance due to the nature of the real-time large data in transportation system. With the advancement of large data, monitoring and improving the traffic safety transformed into necessity in the form of actively and appropriately. Per-formance efficiency and traffic safety are considered as an im-portant element in measuring the performance of the system. Although the productivity can be evaluated in terms of traffic congestion, safety can be obtained through analysis of incidents. Exposure effects have been done to identify the Factors and solutions of traffic congestion and accidents.In this study, the goal is reducing traffic congestion and im-proving the safety with reduced risk of accident in freeways to improve the utilization of the system. Suggested method Man-ages and controls traffic with use of prediction the accidents and congestion traffic in freeways. In fact, the design of the real-time monitoring system accomplished using Big Data on the traffic flow and classified using the algorithm of random-ized forest and analysis of Big Data Defined needs. Output category is extracted with attention to the specified characteristics that is considered necessary and then by Alarms and signboards are announced which are located in different parts of the freeways and roads. All of these processes are evaluated by the Colored Petri Nets using the Cpn Tools tool.
Pattern Analysis and Intelligent Systems
hamed babaei; Jaber Karimpour; Sajjad Mavizi
Volume 3, Issue 1 , February 2017, , Pages 45-64
Abstract
University course timetabling problem is one of the hard problems and it must be done for each term frequently which is an exhausting and time consuming task. The main technique in the presented approach is focused on developing and making the process of timetabling common lecturers among different departments ...
Read More
University course timetabling problem is one of the hard problems and it must be done for each term frequently which is an exhausting and time consuming task. The main technique in the presented approach is focused on developing and making the process of timetabling common lecturers among different departments of a university scalable. The aim of this paper is to improve the satisfaction of common lecturers among departments and then minimize the loss of resources within departments. The applied method is to use a collaborative search approach. In this method, at first all departments perform their scheduling process locally; then two clustering and traversing agents are used where the former is to cluster common lecturers among departments and the latter is to find unused resources among departments. After performing the clustering and traversing processes, the mapping operation in done based on principles of common lecturers constraint in redundant resources in order to gain the objectives of the problem. The problem’s evaluation metric is evaluated via using fuzzy c-means clustering algorithm on common lecturer constraints within a multi agent system. An applied dataset is based on meeting the requirements of scheduling in real world among various departments of Islamic Azad University, Ahar Branch and the success of results would be in respect of satisfying uniform distribution and allocation of common lecturers on redundant resources among different departments .
Computer Networks and Distributed Systems
Ali Abbasi; Amir Masoud Rahmani; Esmaeil Zeinali Khasraghi
Volume 1, Issue 4 , November 2015, , Pages 1-14
Abstract
Abstract - One of the important problems in grid environments is data replication in grid sites. Reliability and availability of data replication in some cases is considered low. To separate sites with high reliability and high availability of sites with low availability and low reliability, clustering ...
Read More
Abstract - One of the important problems in grid environments is data replication in grid sites. Reliability and availability of data replication in some cases is considered low. To separate sites with high reliability and high availability of sites with low availability and low reliability, clustering can be used. In this study, the data grid dynamically evaluate and predict the condition of the sites. The reliability and availability of sites were calculated and it was used to make decisions to replicate data. With these calculations, we have information on the locations of users in grid with reliability and availability or cost commensurate with the value of the work they did. This information can be downloaded from users who are willing to send them data with suitable reliability and availability. Simulation results show that the addition of the two parameters, reliability and availability, assessment criteria have been improved in certain access patterns.
Pattern Analysis and Intelligent Systems
Mozhgan Rahimirad; Mohammad Mosleh; Amir Masoud Rahmani
Volume 1, Issue 2 , May 2015, , Pages 1-8
Abstract
With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to ...
Read More
With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However, only a few methods are utilized for huge text classification problems. In this paper, we propose a new wrapper method based on Particle Swarm Optimization (PSO) algorithm and Support Vector Machine (SVM). We combine it with Learning Automata in order to make it more efficient. This helps to select better features using the reward and penalty system of automata. To evaluate the efficiency of the proposed method, we compare it with a method which selects features based on Genetic Algorithm over the Reuters-21578 dataset. The simulation results show that our proposed algorithm works more efficiently.
Pattern Analysis and Intelligent Systems
Sahar Rahmatian; Reza Safabakhsh
Volume 1, Issue 2 , May 2015, , Pages 15-22
Abstract
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking ...
Read More
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifiers, similarity scores, the Hungarian algorithm and inter-object occlusion handling. Detections have been used for training person-specific classifiers and to help guide the trackers by computing a similarity score based on them and spatial information and assigning them to the trackers with the Hungarian algorithm. To handle inter-object occlusion we have used explicit occlusion reasoning. The proposed method does not require prior training and does not impose any constraints on environmental conditions. Our evaluation showed that the proposed method outperformed the state of the art approaches by 10% and 15% or achieved comparable performance.