Computer Networks and Distributed Systems
OJO JAYEOLA ADARAMOLA
Volume 4, Issue 3 , August 2018, , Pages 185-192
Abstract
Abstract- Efficient message delivery in city environment is required to ensure driver’s safety and passenger’s comfortability. In cities of developed nations, routing of data in vehicular Ad hoc Network (VANET) faces many challenges such as radio obstacles, mobility constraints and uneven ...
Read More
Abstract- Efficient message delivery in city environment is required to ensure driver’s safety and passenger’s comfortability. In cities of developed nations, routing of data in vehicular Ad hoc Network (VANET) faces many challenges such as radio obstacles, mobility constraints and uneven nodes distribution. These factors primarily makes communication between vehicles complex. To overcome and transmit data traffic effectively in city environment in the presence of above-mentioned challenges, evaluation of some network parameters conducted. The selected metrics are packet delivery ratio (PDR), end-to-end delay and routing overhead. These are based on three performance of position-based routing protocols: Anchor–based Street and Traffic Awareness Routing (A-STAR), Greedy Perimeter Coordinator Routing (GPCR) and Contention Based Forwarding (CBF) with the help of Simulation of Urban Mobility (SUMO) to generates vehicle mobility in city environment and network simulator (OMNeT++) to creates and calculates needed components. The speed of the vehicles and node density were varied in this process, and the simulated results showed that CBF outperforms significantly than A-STAR and GPCR in terms of packet delivery ratio as the speed varied and with a better end-to-end delays and routing overhead at a lower speed. In addition, CBF performs better than A-STAR and GPCR in terms of packet delivery ratio as the node varied with a better end-to-end delay, and a better routing overhead at a lower node density.