Computer Networks and Distributed Systems
Bahareh Rahmati; Amir Masoud Rahmani; Ali Rezaei
Volume 3, Issue 2 , May 2017, , Pages 75-80
Abstract
Abstract— High-performance computing and vast storage are two key factors required for executing data-intensive applications. In comparison with traditional distributed systems like data grid, cloud computing provides these factors in a more affordable, scalable and elastic platform. Furthermore, ...
Read More
Abstract— High-performance computing and vast storage are two key factors required for executing data-intensive applications. In comparison with traditional distributed systems like data grid, cloud computing provides these factors in a more affordable, scalable and elastic platform. Furthermore, accessing data files is critical for performing such applications. Sometimes accessing data becomes a bottleneck for the whole cloud workflow system and decreases the performance of the system dramatically. Job scheduling and data replication are two important techniques which can enhance the performance of data-intensive applications. It is wise to integrate these techniques into one framework for achieving a single objective. In this paper, we integrate data replication and job scheduling with the aim of reducing response time by reduction of data access time in cloud computing environment. This is called data replication-based scheduling (DRBS). Simulation results show the effectiveness of our algorithm in comparison with well-known algorithms such as random and round-robin.
Software Engineering and Information Systems
mehdi Sadeghzadeh
Volume 3, Issue 1 , February 2017, , Pages 31-38
Abstract
In data grid, using reservation is accepted to provide scheduling and service quality. Users need to have an access to the stored data in geographical environment, which can be solved by using replication, and an action taken to reach certainty. As a result, users are directed toward the nearest version ...
Read More
In data grid, using reservation is accepted to provide scheduling and service quality. Users need to have an access to the stored data in geographical environment, which can be solved by using replication, and an action taken to reach certainty. As a result, users are directed toward the nearest version to access information. The most important point is to know in which sites and distributed system the produced versions are located. By selecting a suitable place for versions, the versions having performance, efficiency and lower access time are used. In this study, an efficient method is presented to select the best place for those versions created in data grid by using the users’ firefly algorithm which is compared with cooling algorithm. Results show that firefly algorithm has better performance than others.This means firefly algorithm is better and more accurate than genetic algorithm and particle swarm optimization in data replication task.
Computer Networks and Distributed Systems
Kobra Bagheri; Mehran Mohsenzadeh
Volume 2, Issue 3 , August 2016, , Pages 27-34
Abstract
Abstract— Data grids are an important branch of gird computing which provide mechanisms for the management of large volumes of distributed data. Energy efficiency has recently emerged as a hot topic in large distributed systems. The development of computing systems is traditionally focused on performance ...
Read More
Abstract— Data grids are an important branch of gird computing which provide mechanisms for the management of large volumes of distributed data. Energy efficiency has recently emerged as a hot topic in large distributed systems. The development of computing systems is traditionally focused on performance improvements driven by the demand of client's applications in scientific and business domains. High energy consumption in computer systems leads to their limited performance because of the increased consumption of carbon dioxide and amount of electricity bills. Thus, the goal of design of computer systems has been shifted to power and energy efficiency. Data grids can solve large scale applications that require a large amount of data. Data replication is a common solution to improve availability and file access time in such environments. This solution replicates the data file in many different sites. In this paper, a new data replication method is proposed that is not only data aware, but also is energy efficient. Simulation results with CLOUDSIM show that the proposed method gives better energy consumption, average response time, and network usage than other algorithms and prevents the unnecessary creation of replica, which leads to efficient storage usage.