Computer Networks and Distributed Systems
Ghazaal Emadi; Amir Masoud Rahmani; Hamed Shahhoseini
Volume 3, Issue 3 , August 2017, , Pages 135-144
Abstract
The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ...
Read More
The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and user needs for these applications with high quality, as well as, the popularity of cloud computing among user and rapidly growth of them during recent years. This research presents the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), an evolutionary algorithm in the field of optimization for tasks scheduling in the cloud computing environment. The findings indicate that presented algorithm, led to a reduction in execution time of all tasks, compared to SPT, LPT, and RLPT algorithms.Keywords: Cloud Computing, Task Scheduling, Virtual Machines (VMs), Covariance Matrix Adaptation Evolution Strategy (CMA-ES)