Computer Networks and Distributed Systems
Marzieh Bozorgi Elize; Ahmad KhademZadeh
Volume 3, Issue 4 , November 2017, , Pages 203-212
Abstract
Cloud computing is a result of the continuing progress made in the areas of hardware, technologies related to the Internet, distributed computing and automated management. The Increasing demand has led to an increase in services resulting in the establishment of large-scale computing and data centers, ...
Read More
Cloud computing is a result of the continuing progress made in the areas of hardware, technologies related to the Internet, distributed computing and automated management. The Increasing demand has led to an increase in services resulting in the establishment of large-scale computing and data centers, in addition to high operating costs and huge amounts of electrical power consumption. Insufficient cooling systems and inefficient, causing overheating sources, shortening the life of the machine and too much carbon dioxide is produced. In this paper, we aim to improve system performance; Cloud Computing based on a decrease in migration of among virtual machines (VM), and reduce energy consumption to be able to manage resources to achieve optimal energy efficiency. For this reason, various techniques such as genetic algorithms (GAs), virtual machine migration and ways Dynamic voltage and frequency scaling (DVFS), and resize virtual machines to reduce energy consumption and fault tolerance are used. The main purpose of this article, the allocation of resources with the aim of reducing energy consumption in cloud computing. The results show that reduced energy consumption and hold down the rate of virtual machines breach of contract, reduces migration as well.
Computer Networks and Distributed Systems
Mohammadreza Pourkiani; Sepideh Adabi; Sam Jabbehdari; Ahmad Khademzadeh
Volume 3, Issue 3 , August 2017, , Pages 153-166
Abstract
The systems in which information and communication technologies and systems engineering concepts are utilized to develop and improve transportation systems of all kinds are called “The Intelligent Transportation Systems (ITS)”. ITS integrates information, communications, computers and other ...
Read More
The systems in which information and communication technologies and systems engineering concepts are utilized to develop and improve transportation systems of all kinds are called “The Intelligent Transportation Systems (ITS)”. ITS integrates information, communications, computers and other technologies and uses them in the field of transportation to build an integrated system of people, roads and vehicles by utilizing advanced data communication technologies. Vehicular Ad-hoc Networks which is a subset of Mobile Ad-hoc Networks, provide Vehicle to Vehicle (V2V), Vehicle to Roadside (V2R) and Vehicle to Infrastructure (V2I) communications and plays an important role in Intelligent Transportation System. Due to special characteristics of VANETs, QoS (Quality of Service) provisioning in these networks is a challenging task. QoS is the capability of a network for providing superior service to a selected network traffic over various heterogeneous technologies. In this paper we present an overview of Vehicular Networks, QoS Concepts, QoS challenges in VANETs and approaches which aim to enhance the Quality of Service in Vehicular Networks
Computer Networks and Distributed Systems
Mohammadreza Pourkiani; Sam Jabbehdari; Ahmad Khademzadeh
Volume 2, Issue 3 , August 2016, , Pages 43-53
Abstract
The Intelligent Transportation System (ITS) provides wireless and mobile communication between vehicles and infrastructure to improve the safety of transportation and make the journey more enjoyable. This system consists of many fixed and mobile nodes (Vehicles, Trains, Vessels, Air planes), Wireless ...
Read More
The Intelligent Transportation System (ITS) provides wireless and mobile communication between vehicles and infrastructure to improve the safety of transportation and make the journey more enjoyable. This system consists of many fixed and mobile nodes (Vehicles, Trains, Vessels, Air planes), Wireless and Wired Telecommunication Technologies to exchange information between mobile nodes or between mobile nodes and fixed stations. The most common transportation tools are cars. Vehicular Ad-hoc Networks as an Application of Mobile Ad-hoc Networks and one of the subsets of Intelligent Transportation System provides wireless Ad-hoc communication between vehicles. VANET is a mobile wireless technology which is designed to improve safety of transportation with exchanging real time data between vehicles and providing different services to the users. It has special characteristics like high mobility and provides a broad range of services to the users, so it has been emerged as one of the research interests in the field of computer and telecommunication networks. In This paper we present different aspects of ITS and VANET to help the researchers to understand the Architecture, Communication Technologies and Applications of these networks.
Forouz Ghaffarizadeh; Ahmad Khademzadeh
Volume 1, Issue 1 , February 2015, , Pages 51-58
Abstract
Mobile ad hoc networks (MANET) are constructed by mobile nodes without access point. Since MANET has certain constraints, including power shortages, an unstable wireless environment and node mobility, more power-efficient and reliable routing protocols are needed. The OLSR protocol is an optimization ...
Read More
Mobile ad hoc networks (MANET) are constructed by mobile nodes without access point. Since MANET has certain constraints, including power shortages, an unstable wireless environment and node mobility, more power-efficient and reliable routing protocols are needed. The OLSR protocol is an optimization of the classical link state algorithm. OLSR introduces an interesting concept, the multipoint relays (MPRs), to mitigate the message overhead during the flooding process. Although very efficient by many points, it suffers from the drawbacks of not taking into account QoS metrics such as delay or bandwidth. To overcome this pitfall, some QOLSR solutions have been designed. IN this paper, we introduce an algorithm for MPRs selection based on Battery Capacity and Link Stability. Simulation results show that our proposed protocol is able to enhance throughput and improve end-to-end delay.