Computer Architecture and Digital Systems
Jibril Bala; Olayemi Olaniyi; Taliha Folorunso; Tayo Arulogun
Volume 6, Issue 4 , November 2020, , Pages 213-226
Abstract
Proportional-Integral-Derivative (PID) controllers and Internal Model Controllers (IMC) are effective tools in control analysis and design. However, parameter tuning, and inaccurate model representation often lead to unsatisfactory closed loop performance. In this study, we analyse the effect of PID ...
Read More
Proportional-Integral-Derivative (PID) controllers and Internal Model Controllers (IMC) are effective tools in control analysis and design. However, parameter tuning, and inaccurate model representation often lead to unsatisfactory closed loop performance. In this study, we analyse the effect of PID controllers and IMCs tuned with Genetic Algorithm (GA) and Fuzzy Logic (FL), on a poultry feeding system. The use of GA and FL for tuning of the PID and IMC parameters was done to enhance the adaptability and optimality of the controller. A comparative analysis was made to analyse closed loop performance and ascertain the most effective controller. The results showed that the GA-PID and FL-PID gave a better performance in the aspect of rise time, settling time and Integrated Absolute Error (IAE). On the other hand, the GA-IMC and FL-IMC gave better performances in the aspect of the performance overshoot. Therefore, for processes in which a faster response and lower IAE are desired, the GA-PID and FL-PID are more effective while for processes in which the major objective is to minimise the overshoot, the GA-IMC and FL-IMC are more suitable.
Pattern Analysis and Intelligent Systems
Taliha A Folorunso; Musa Abiodun Aibinu; Jonathan Gana Kolo; Suleiman Omeiza Eku Sadiku; Abdullahi Muhammed Orire
Volume 5, Issue 3 , August 2019, , Pages 195-204
Abstract
Water Quality plays an important role in attaining a sustainable aquaculture system, its cumulative effect can make or mar the entire system. The amount of dissolved oxygen (DO) alongside other parameters such as temperature, pH, alkalinity and conductivity are often used to estimate the water quality ...
Read More
Water Quality plays an important role in attaining a sustainable aquaculture system, its cumulative effect can make or mar the entire system. The amount of dissolved oxygen (DO) alongside other parameters such as temperature, pH, alkalinity and conductivity are often used to estimate the water quality index (WQI) in aquaculture. There exist different approaches for the estimation of the quality index of the water in the aquatic environment. One of such approaches is the use of the Artificial Neural Network (ANN), however, its efficacy lies in the ability to select and use optimal parameters for the network. In this work, different WQI estimation models have been developed using the ANN. These models have been developed by varying the activation function in the hidden layer of the ANN. The performance of the ANN-based estimation models was compared with that of the multilinear regression (MLR) based model. The performance comparison depicts the ANN model case 3 with a tangent activation function as the most accurate and optimal model as compared with MLR model and other ANN models based on the mean square error (MSE), root mean square error (RMSE) and regression (R) metrics. The optimal model has a goodness of fit of 0.998, thereby outweighing other developed models in its capability to estimate the WQI in the aquaculture system